

Object Design Document (ODD)
Computer emulator for digital preservation

Version : 1.1
Author : J.R. van der Hoeven
Date : 25-06-2007
Project : Emulation project

Koninklijke Bibliotheek, department HRD-DD
Nationaal Archief of the Netherlands

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 2

I. Revision history

Revision number Revision date Author Summary of changes
1.1 25/06/2007 B. Lohman Minor changes to text; clarifications

II. Related documents

Document name Date Author
User Requirements Document (URD) 21-02-2006 B. Lohman

Architectural Design Document (ADD) 03-03-2006 B. Lohman

Emulation – a viable preservation strategy 20-06-2005 J.R. van der Hoeven

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 3

III. Table of contents

I. Revision history .. 2
II. Related documents ... 2
III. Table of contents .. 3
1 Introduction .. 4

1.1 Object design trade-offs ... 4
1.1.1 Durability versus platform dependance .. 4
1.1.2 Performance versus flexibility... 4

1.2 Definitions, acronyms, and abbreviations .. 5
2 Package and class diagrams .. 6

2.1 General application functionality ... 6
2.2 Modular emulator ... 8

2.2.1 Uniqueness .. 8
2.2.2 Interoperability ... 8
2.2.3 Modular organisation ... 9
2.2.4 Reusability... 10

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 4

1 Introduction

This Object Design Document (ODD) defines the object-level design of the emulator to be
developed. It is based on the initial concept of the modular architecture, proposed in
Emulation – a viable preservation strategy, and requirements and ADD defined in previous
project stages.

The goal of this project is to develop an emulator based on the initial design shown in figure
1.1. Although this design depicts many different parts, only the modular emulator and a
controller will be within scope.

Figure 1.1 Initial design of a modular emulator for digital preservation

1.1 Object design trade-offs
Developing an emulator designed for digital preservation will be different from mainstream
emulators. This is because the focus will be less on performance and more on durability and
flexibility.

1.1.1 Durability versus platform dependance
Having an emulator running with great speed today doesn’t help users in the future if the
emulator doesn’t work on newer platforms. Therefore, the emulator should have as few
dependencies on the underlying computer platform as possible. In the initial design, a virtual
machine is depicted to create a separate interface between the emulator and host platform.

1.1.2 Performance versus flexibility
Often, emulators are designed to achieve the highest possible execution speed, as emulators
are normally operating at a slower pace than the real machine. But within the light of digital
preservation, emulation will be used only if the original computer environment is not
available anymore. As Moore’s law is still applicable today, it is likely that computer systems
in the future will turn out to be faster. Speculating on this line of thought, building an

Future hardware

Future system software (OS)
Platform & time

dependent

Universal Virtual Machine (UVM)

Interface

Platform & time

independent

Controller
Start UVM

and load

Emulator

specification

document

Original

Modular emulator

CPU

Library

CPU

Memory

HD

CD

Graphics

Sound

load

PDF document Database

PDF viewer DBMS Interactive app.

Original system software (OS)

Memory

HD

CD

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 5

emulator for digital preservation doesn’t have to be focused on performance too much.
Instead it would be useful to have an emulator that is easy to configure and less tight to get
the maximum performance out of it. Therefore, flexibility is of higher priority than
performance.

1.2 Definitions, acronyms, and abbreviations
The following definitions will be used:

Modular emulation : full emulation of hardware by emulating the components

of a hardware architecture as individual emulators and
interconnecting them to form a full emulation process. In
this, each emulator forms a distinct module of the total
emulation process offering the possibility to make flexible
configurations of different modules.

Module : a software representation of the functionality of a

hardware component.

Type of module : a classification of a module by type of hardware

component. Examples of a type: cpu, memory,
motherboard, etc. There can only be one type of module,
but several implementations of a type may exist. For
example: cpu is a type and may have implementations
based on Intel 8086 or IBM PPC.

Name of module : the name of the module. This is similar as the name of the

hardware component that it emulates.

ID of module : the unique identifier of the module.

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 6

2 Package and class diagrams

In overview, the emulation application will consist of several packages. This results in the
following package overview (see figure 2.1). Note: not all module packages and classes are
shown below. For ease of use, package root “emulator” is chosen, but this may differ from the
final implementation of packages.

Figure 2.1: Emulator package overview

2.1 General application functionality
At the highest level, one package can be found:

emulator

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 7

Package emulator will contain classes such as GUI for the user interface, IO for importing
and exporting data between emulator and environment, and Emulator for the actual control
of the emulation process. Furthermore, a class Modules will be required which will contain
all instances of modules in use by the emulation process. Below, a class diagram is shown for
this package. Note: operations (methods) are not shown here.

Figure 2.2: class diagram of package emulator

Besides the package emulator, other helper packages are required. These are:

emulator.config
emulator.logging
emulator.exception

These packages are responsible for handling the configuration of the emulator, logging of the
execution status during an emulation process and exception handling.
The actual implementation is not known yet, but package config should be based on an
XML-document (Emulator Specification Document as denoted in the overall conceptual
model for this project) which has to be parsed by this package and the results should be set to
the emulator.
Package logging can be based on the standard logging libraries of Java 1.4 or higher.
Package exception should offer several exception classes to handle module-specific
exceptions.

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 8

2.2 Modular emulator
The part of the emulator that is responsible for emulating hardware is composed of modules
as defined in the initial design. Each module represents a single hardware component in
software and tries to mimic the exact functionality of it. In table 2.1 all modules and
subsequent packages are shown that are assumed to be required for building an x86 computer
emulator.

Table 2.1: module packages
Package Functionality
emulator.module.cpu Central Processing Unit
emulator.module.memory Random Access Memory
emulator.module.ata ATA / IDE controller to support hard disks

and CD-ROM drives
emulator.module.fdc Floppy Disk Controller to support floppy

disks
emulator.module.clock System clock
emulator.module.bios BIOS for initialising and booting the system
emulator.module.dma Direct Memory Access for fast transfer of

data between memory and device
emulator.module.keyboard Keyboard support
emulator.module.mouse Mouse support
emulator.module.motherboard Motherboard functionality like I/O address

space control
emulator.module.pic Programmable Interrupt Controller for

handling interrupts of devices
emulator.module.rtc Real-time clock for CMOS registers and

storing date and time information
emulator.module.screen Virtual computer screen
emulator.module.video Video adapter support

2.2.1 Uniqueness
Each module represents a unique implementation of a hardware component. Therefore,
modules should have a unique identifier and type classification. The type defines which kind
of computer component it emulates while the ID points out which implementation it is.
Examples of types could be “cpu”, “memory”, “bios”, etc. Type definitions should be used in
the name of the package, whereas the ID should included in the source code. Also, both type
and ID should be part of the metadata when forming a module library (see initial design).

2.2.2 Interoperability
As most modules do not operate standalone, a communication mechanism is required to let
each individual module communicate with other modules. Therefore, each module should
implement a standard set of methods to support interoperability between other modules. In
table 2.2 a list of predefined functions is given which is likely to be useful.

Table 2.2: List of standard functions for a module
Function Description
getType() Returns the type of the module
getID() Returns the ID of the module
getName() Returns the name of the emulated component
getConnection() Returns a list of module types for which this module

requires a connection to
setConnection(Module) Create a relation to given module reference

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 9

isConnected() Check if all required relations are set for this module
Start() Start emulation process for this module
Stop() Stop emulation process for this module
Reset() Reset emulation process for this module
isObserved() Check if this module is in an observable mode (to allow

closer examination of its operation)
setObserved() Put this module in observable mode
getDebugMode() Returns the status of the modules debug mode
setDebugMode() Set the status of debug mode for this module
getData(Module) General method to send data to the calling module
setData(data, Module) General method to retrieve data from sending module
getDump() Returns a status dump of this module

Based on the kind of hardware component, a module will contain more specific functions to
emulate the functionality of the hardware. As these functions may be invoked by other
modules, it is necessary to define more type-specific functionality. To do so, each module not
only has to implement the general functions, but also needs to be extended with type-specific
functions. For example, module memory could be extended with functions for reading and
writing bytes from and to RAM. Which functions are required, is uncertain until it is known
which functionality of a component has to be emulated and should be shared with other
modules.

2.2.3 Modular organisation
To make sure each module implements the general and type-specific functionality, modules
should implement a standard abstract class. Each module should have an equivalent abstract
class. For example, module Memory should have an abstract class ModuleMemory. This
abstract class will serve as a blueprint for the module memory and forces each module that
emulates memory to implement all required general and type-specific functions.

Figure 2.3 depicts the general class organisation for the modules mentioned earlier.

Figure 2.3: class diagram of abstract module classes

Object Design Document (ODD)

Author: J.R. van der Hoeven
Date: 25-06-2007 Project: emulation project
Version: 1.0 Page: 10

In figure 2.3, modules clock, CPU, memory, BIOS, screen and motherboard directly inherit
the general methods from abstract class Module. The Each abstract type-specific module class
extends this general set of methods with its own type-specific methods.

Modules PIC, RTC, ATA, FDC, DMA, video and keyboard do not directly inherit from
abstract class Module. The difference is based on the way their real life hardware equivalents
communicate. Each of these components are called devices and use a centrally organised I/O
address space for communication. By introducing an intermediate abstract class
ModuleDevice, all modules that represent a device are able to use a similar mechanism like
I/O address space. Implementing methods from abstract ModuleDevice allows a device to
register a particular range of I/O address space and transfer data between it.

2.2.4 Reusability
The big advantage of the modular organisation of the emulator is that models can be reused to
operate in any emulation process. Reconnecting them to the required surrounding modules is
sufficient to let the module operate correctly. Also, various software implementations of a
hardware component can be created and used while the communication between other
modules will stay the same.

Another benefit which will be useful during development, is that individual modules can be
implemented and refined, while leaving the emulator itself untouched. Developers can work
on different modules simultaneously without interfering with each others implementation.

	1 Introduction
	1.1 Object design trade-offs
	1.1.1 Durability versus platform dependance
	1.1.2 Performance versus flexibility

	1.2 Definitions, acronyms, and abbreviations
	2 Package and class diagrams
	2.1 General application functionality
	2.2 Modular emulator
	2.2.1 Uniqueness
	2.2.2 Interoperability
	2.2.3 Modular organisation
	2.2.4 Reusability

