

System Maintenance Guide (SMG)
Computer emulator for digital preservation

Version : 1.2
Author : B. Lohman, J.R. van der Hoeven
Date : 05-07-2007
Project : Emulation project

Koninklijke Bibliotheek (National Library of the Netherlands)
Nationaal Archief of the Netherlands

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 2

I. Revision history

Revision number Revision date Author Summary of changes
1.1 21-06-2007 J.R. van der Hoeven Refined some bits

1.2 05-07-2007 B. Lohman Incorporated new comments project manager

II. Related documents

Document name Date Author
User Requirements Document [URD] 21-02-2006 B. Lohman

Architectural Design Document [ADD] 03-03-2006 B. Lohman

Object Design Document [ODD] 25-06-2007 J.R. van der Hoeven

Emulation report by KB/NA [EMU] 20-06-2005 J.R. van der Hoeven

Dioscuri User Manual [DUM] 05-07-2007
B. Lohman
J.R. van der Hoeven

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 3

III. Table of contents

I. Revision history .. 2
II. Related documents ... 2
III. Table of contents .. 3
1 Introduction .. 4

1.1 Purpose of this document ... 4
1.2 Scope of this document .. 4
1.3 Definition of Terms .. 4
1.4 Installation / uninstall ... 4
1.5 Installation Verification Procedure... 4
1.6 Quick Guide ... 4

2 The Development Environment .. 6
2.1 IDE ... 6
2.2 CVS .. 6

3 Design ..7
4 Implementation .. 8
5 Creating a Release.. 12

5.1 Version of the release ... 12
5.2 Generating JAR .. 12
5.3 Finalising the release (includes) ... 12

6 Creating a Build Environment.. 13
6.1 Creating a build environment from CVS.. 13
6.2 Creating a build environment from local files.. 13

7 References ... 14

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 4

1 Introduction

1.1 Purpose of this document
This document provides information about how the Dioscuri software is constructed. It is
intended for anyone who needs to maintain the software. It does not describe how to use the
system; this is covered by the Dioscuri user manual [DUM].

1.2 Scope of this document
This document covers the software developed for the Dioscuri emulation project for the
Nationaal Archief of the Netherlands (NA) and the Koninklijke Bibliotheek, National Library
of the Netherlands (KB). It includes updated high-level design decisions. Detailed design
notes are included as comments in the project source files.

1.3 Definition of Terms
DUM The Dioscuri User Manual, describes how to use the application.
SMG The System Maintenance Guide, describes how to maintain the system.
ODD Object Design Document, describes the modular architecture in detail.
ADD Architectural Design Document, describes the design of the software.
SRD The Software Requirements Document, specifies the behaviour of the software

system.

1.4 Installation / uninstall
The complete installation/uninstallation procedure is described in the [DUM]. It should be
sufficient to mention here that the software is packaged as a stand-alone jar (Java Archive)
file, and only requires the installation of the Java Runtime Environment, version 1.5 or higher.

1.5 Installation Verification Procedure
The software will display the current version number in the console when run, along with the
compilation date.

1.6 Quick Guide
The complete guide to running the software is described in the [DUM].
To start the software, run the Java Virtual Machine from the command line, indicating it
should execute a jar file:

java -jar Dioscuri009.jar

The console will display some of the logging information, including the version number and
compilation date, while the main application can be run from the newly created GUI window.
A (boot) image can be selected in the Media menu, and the application will start executing
once the “Start process (power on)” option has been selected from the Emulator menu.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 5

To stop the application, open the Emulator menu and select “Stop process (shutdown)” to
ensure all data is written to the selected images, after which “Quit” is used to exit the
application (or by closing down the GUI window).

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 6

2 The Development Environment

2.1 IDE
The system was build using the freely available Eclipse Software Development Kit version
3.1.2 (http://www.eclipse.org/) . In the early stages, tests for JUnit were written as well, for
which the Eclipse JUnit plugin v.3.8.1 was used.

The Java Runtime Environment is necessary to run the Java code. Any version of the JRE
higher than 1.5 should be sufficient.

2.2 CVS
In the early stages of development a local CVS server was used, which was located at the
Nationaal Archief, on the virtual network server //SVAPPL07. The CVS access string used to
contact the repository was :pserver:<user>@SVAPPL07:/4717, where <user> is a valid user
name.
From version 0.0.9 onwards, the repository was moved to Sourceforge. Details for
Sourceforge CVS access can be found on the project page:

http://sourceforge.net/projects/dioscuri

To summarise, this states the following:
Anonymous CVS download, read only:
:pserver:anonymous@dioscuri.cvs.sourceforge.net:/cvsroot/dioscuri [no password]
Developer CVS, read/write access:
:extssh:<DEV_NAME>@dioscuri.cvs.sourceforge.net:/cvsroot/dioscuri [<DEV password>]

There is a sync delay of at most 1 hour between the development and anonymous CVS.
All user and password information is stored by the Dioscuri project administrators.

http://sourceforge.net/projects/dioscuri

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 7

3 Design

The system design is based on the original computer architecture, following the modular
structure of separate components fulfilling a distinct task. This design philosophy has resulted
in a structure of packages implementing their hardware equivalent functionality, with a few
separate packages filling in extra software functionality.
For full information on the design, refer to [ADD] and [ODD], which were created at the
beginning of the project and include more details on each of the components / modules.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 8

4 Implementation

The emulated computer components are based on the functionality of real hardware
components. These components are implemented as modules of which each module is a
representation of the hardware of that specific component (device). The structure of each
module is generally the same as they all inherit from the superclass ‘module.java’. This
superclass contains a list of general methods to ensure that the modules are able to
communicate with each other.

From version 0.0.9 onwards, the namespace is:

nl.kbna.dioscuri.[package]

Other packages which do not directly implement a hardware component are the ‘emulator’ ,
‘config’, ‘exception’, and ‘logging’ package. See for more information [ODD].

A complete summary of non-component modules is as follows:

Table 4.1: overview of non-component packages
Package
[nl.kbna.dioscuri]

Contents Description

emulator Emulator.java
GUI.java
IO.java
Modules.java

Main package of the DIOSCURI application, provides
configuration parameters, sets up all modules, provides
input/output and the entry to the graphical user interface.

config AtaConfigDialog.java
BiosConfigDialog.java
BootConfigDialog.java
ConfigController.java
ConfigurationDialog.java
CpuConfigDialog.java
DioscuriXmlParams.java
DioscuriXmlReader.java
DioscuriXmlReaderToGui.java
DioscuriXmlWriter.java
FdcConfigDialog.java
ModuleType.java
RamConfigDialog.java
SelectionConfigDialog.java
SimpleConfigDialog.java
XmlConnect.java

Provides configuration handling of the emulation
process. All configuration settings are stored in an XML-
document (based on an XML schema) and can be
altered via the GUI tabs ‘configuration’ or in the XML file
directly. During startup of the emulation process all
settings are read from the XML file.

exception CommandException.java
CPUInstructionException.java
ModuleException.java
ModuleUnknownPort.java
ModuleWriteOnlyPortException.java
StorageDeviceException.java

Provides exception handling for the complete system.

logging ConsoleFormatter.java
FileFormatter.java

Provides logging for all classes.

module Module.java
ModuleBIOS.java
ModuleClock.java

Provides classes for inheritance for all hardware
components. All modules inherit from the basic class
‘Module’, and each of the distinct components
(described below) will inherit from the Module[Type].java

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 9

ModuleCPU.java
ModuleDevice.java
ModuleDMA.java
ModuleFDC.java
ModuleIDE.java
ModuleKeyboard.java
ModuleMemory.java
ModuleMotherboard.java
ModuleParallelPort.java
ModulePIC.java
ModulePIT.java
ModuleRTC.java
ModuleScreen.java
ModuleSerialPort.java
ModuleVideo.java

file for the appropriate module. This ensures a modular
implementation for the emulator, and should allow for
easy substitution with different implementations of each
component, as outlined in [ADD], [ODD] and [SRD].

Each of the implemented hardware components is placed inside a separate package, to support
the modularity of the application. The currently implemented components are as follows:

Table 4.2: overview of component (module) packages
Package
[nl.kbna.dioscuri.
module]

Contents Description

bios BIOS.java Implementation of a BIOS chip. This package reads and
loads the various system BIOSes such as the system
BIOS (for booting) and the Video BIOS (providing video
output routines). The BIOSes are read from image files
included with the application, which were provided as
open source implementations.

clock Clock.java
Timer.java

Provides an implementation of a quartz-crystal clock,
supplying timer mechanisms to all components that
need it. The timer class translates the crystal
‘oscillations’ into timers with adjustable interval lengths.

cpu CPU.java
Instruction.java
Util.java
plus 256 individual instructions

Implements a Central Processing Unit, including the
instructions in the Intel opcode sets. Also implements all
the necessary registers and flags.
Each instruction is implemented as a separate class
inheriting from ‘Instruction.java’, which are called from
an array in the CPU class.
The Util class implements some commonly used
methods, such as added and subtracting 2 byte arrays,
setting flags, etc.

dma DMA.java
DMA16Handler.java
DMA8Handler.java
DMAChannel.java
DMAController.java
DMAModeRegister.java

Provides an implementation of Direct Memory Access,
at this point mainly used by the floppy drive to transfer
data from/to memory. The implementation is
generalised so each component can register a handler
to let DMA take care of the transfer for them.

fdc DMA8Handler.java
Drive.java
FDC.java
Floppy.java

Floppy Drive Controller implementation. Provides a way
to load floppy drive images (160K – 2.88M) in the
emulator. Uses DMA to read/write data into memory.

ata AscType.java
Atpi.java
CDROM.java
DiskImage.java
DMA8Handler.java

Implementation of a hard disk conforming to the ATA /
IDE standard. Provides a way to attach hard disk
images (given their geometry in terms of
cylinders/heads/sectors per track) in the emulator.
Transfers data directly (i.e. via CPU and I/O address
space) from the disk to memory.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 10

IDE.java
IDEChannel.java
IDECommand.java
IDEConstants.java
IDEDrive.java
IDEDriveController.java
IDEDriveType.java
IDEStatus.java
IDETranslationType.java
InterruptReason.java
ModuleType.java
SenseInfo.java
SenseType.java

keyboard Keyboard.java
KeyBoardController.java
KeyboardInternalBuffer.java
ScanCodeSets.java
TheKeyboard.java

Keyboard input for the emulator. Emulates all
components of the traditional keyboard, including an
internal buffer and translation from keypress to
scancode.

memory Memory.java Implementation of Random Access Memory. This is
represented as one big array of bytes, with the
appropriate getting and setting as required for the CPU
instructions.

motherboard DeviceDummy.java
Devices.java
Motherboard.java

Motherboard implementation, providing a connecting
component for most other peripherals (devices).
Handles most of the I/O ports input and output, and
delegates the assigned ports to the correct device.
Unassigned ports are handled by the dummy device,
‘DeviceDummy.java’.
Furthermore, it handles the timing mechanism by
connecting devices that require a timer to the clock.
Finally, it connects devices to the Programmable
Interrupt Controller (PIC).

parallelport ParallelPort.java A stub for the parallel port implementation. Returns
default values for I/O port requests.

pci PCI.java A stub for the Peripheral Component Interconnect
implementation. Returns default values for I/O port
requests.

pic Init.java
PIC.java
TheProgrammableInterruptController.
java

The Programmable Interrupt Controller implementation.
Handles all interrupts generated by individual devices
and delegates these to the CPU for scheduling.

pit Clock.java
Counter.java
PIT.java

Implementation of a Programmable Interrupt Timer.
Generates an interrupt after a set interval, which is used
as a timing mechanism for some components, most
notable the RTC. It offers three counters of which each
counter can be set to a specific mode and interval.

rtc RTC.java Real Time Clock implementation. Contains all the data
of the CMOS chip, including current system time, date,
equipment information, status, boot sequence, etc.

screen CodePage437.java
Screen.java
ScreenCanvas.java

An implementation of a CRT/LCD screen component,
used in the GUI to display output of the emulator.
Emulates a screen of mostly any size, both in text and
graphics mode. A 16-byte implementation of a character
set is included in the ‘CodePage437.java’ class.

serialport SerialPort.java A stub for the serial port implementation. Returns
default values for I/O port requests.

video AttributeController.java
ColourRegister.java
CRTControllerRegister.java
GraphicsController.java

Implementation of a videocard with no onboard
memory. Emulates the standard registers found in a
simple VGA card, and translates any video data in
memory to visual output on the screen.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 11

MiscellaneousOutputRegister.java
ModeControlRegister.java
Pixel.java
SequencerRegister.java
TextModeAttributes.java
VGA.java
VideoCard.java

The above packages implement a full emulator, with the stubs as mentioned. The GUI class in
nl.kbna.dioscuri.emulator package is the main class, as the GUI will provide the main method
of interaction for the user. From the selected options available, the emulator will perform the
requested function.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 12

5 Creating a Release

5.1 Version of the release
First of all, make sure that the version number is correct. During the Dioscuri project, the
versioning system maintains three numbers, denoted as: x.y.z

x = Major number. Is upgraded when significant jumps in functionality occurs. A zero (0)

number denotes a pre-production version (alpha or beta). Higher versions (> 0) have
to be stable and mature.

y = Minor number. Is upgraded when minor features are introduced or significant bug
fixes have been added.

z = Revision number. Is upgraded when minor bugs are fixed.

See http://en.wikipedia.org/wiki/Software_versioning for more information.

5.2 Generating JAR
In Eclipse, a release can be created via the “File->Export…->JAR File menu”. Select all the
relevant files to be included (the minimum for a complete install is the bin folder); this then
creates a stand-alone file that can be run from any computer where the Java Runtime
Environment (version 1.5.0 or higher) is installed.

The main class, nl.kbna.dioscuri.emulator.GUI must be selected as an entry point to
allow the JAR file to be run.

5.3 Finalising the release (includes)
As of this writing, there are certain files, that must be located in predefined directories that
must be included for the release to work properly. These are:

Table 5.1: required files to include in the release
File Directory Description
logging.properties ./ Provides the logging settings for the logger
 ./log Provides a directory location for the log files (this can be

changed in the logging.properties file)
DioscuriConfig.xml
DioscuriConfig.xsd

./config Provides the configuration settings for the emulator
(based on an XML schema)

System BIOS

Default: BIOS-bochs-
latest)

<user selectable>

Default: ./config

The system BIOS used for booting. This can be set via
the GUI menus

VGA BIOS

Default: VGABIOS-lgpl-
latest

<user selectable>

Default: ./config

The VGA BIOS containing video routines. This can be
set via the GUI menus

Floppy/ hard disk image A bootable floppy or hard disk image. This can be set via
the GUI menus

http://en.wikipedia.org/wiki/Software_versioning

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 13

6 Creating a Build Environment

In Eclipse, a build environment can be creating in multiple ways. Two of these are described
below.

6.1 Creating a build environment from CVS
If a Concurrent Version System has been set up, Eclipse can download the source files from
the server and put them into a project, allowing to build the application.

To add a new project from a CVS repository, go to File->New->Project->Checkout Projects
from CVS. For the Dioscuri sourceforge server, enter the following location:

Host: dioscuri.cvs.sourceforge.net
Repository path: /cvsroot/dioscuri
Connection type: pserver
Port: <DEFAULT PORT>
User: anonymous
Password: <NONE>

6.2 Creating a build environment from local files
To create a build environment from local files, go to File->New->Project. Create a new
project.
Once in the project, select File->Import and select the type of import related to the source of
the local files to import these files into the project.

System Maintenance Guide (SMG)

Author: B. Lohman, J.R. van der Hoeven Organisation: KB / NA
Date: 05-07-2007 Project: emulation project
Version: 1.2 Page: 14

7 References

A list of reference for all information regarding a computer system, including any links to
online sources, is kept in a document called “The PC Reference Guide”.

At the time of writing, this document, as well as all other important documentation, will be
published on the Sourceforge project page, http://dioscuri.sourceforge.net

http://dioscuri.sourceforge.net/

	Introduction
	1.1 Purpose of this document
	1.2 Scope of this document
	1.3 Definition of Terms
	1.4 Installation / uninstall
	1.5 Installation Verification Procedure
	1.6 Quick Guide
	2 The Development Environment
	2.1 IDE
	2.2 CVS

	3 Design
	4 Implementation
	5 Creating a Release
	5.1 Version of the release
	5.2 Generating JAR
	5.3 Finalising the release (includes)

	6 Creating a Build Environment
	6.1 Creating a build environment from CVS
	6.2 Creating a build environment from local files

	7 References

